center_img Citation: Physicists Propose a Method to Observe Dirac Monopoles (2009, July 28) retrieved 18 August 2019 from Ville Pietilä and Mikko Möttönen, both of the Helsinki University of Technology in Finland and the University of New South Wales in Australia, have published their theoretical demonstration in a recent issue of Physical Review Letters. Here, they explain how applying an external magnetic field to a Bose-Einstein condensate (BEC) – a large group of cold atoms that exhibits coherent quantum properties – can create point-like topological defects on the spin texture of the BEC. These defects give rise to a vorticity field that is essentially equivalent to the magnetic field of a magnetic monopole.“Since all experimental attempts to find magnetic monopoles have proven to be futile, there is no experimental evidence supporting the existence of magnetic monopoles,” Pietilä told “Other types of monopoles without the Dirac string have been realized in experiments already in the early ‘90s in liquid crystals. An analogy of the real space magnetic monopole was reported to occur in the crystal momentum space of a metallic ferromagnet, but the experimental evidence in this case is somewhat indirect. Dirac monopoles in the more general settings are predicted to occur in various systems such as superfluid Helium-3 and dilute spin-1 Bose-Einstein condensate but so far there are no (direct) experimental observations although they may have been present in some of the Helium-3 experiments. There is also a very recent suggestion on how to induce a magnetic monopole to a band insulator.“Since magnetic monopoles have never been observed, it is pertinent to ask whether there is something unphysical in the whole concept,” he continued. “Our work shows that at least the Dirac monopole can be realized experimentally, thus indicating that it is more than just a theoretical curiosity. However, it should be stressed that our work does not tell anything about the existence of magnetic monopoles in the electromagnetic field.”Pietilä and Möttönen predict that it should be possible to design an experiment to detect the monopole in this situation, if it does exist. As they explain, the magnetic field of the monopole is provided by a Dirac string, which is a line extending from the monopole to infinity. The Dirac string explains why the monopole charge comes in discrete quanta. Since the Dirac string carries two quanta of angular momentum, it is expected to be prone to splitting into two separate strings, each carrying a single quantum. Making magnetic monopoles, and other exotica, in the lablast_img read more